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Abstract. We study the three-state Potts model on a triangular lattice with nearest- 
neighbour interaction K. Using a simple position-space renormalisation group trans- 
formation we find that, in addition to the usual continuous transition to the ferromagnetic 
state which occurs for positive K, a continuous transition to an antiferromagnetic state 
occurs for negative K. Our transformation introduces a three-spin interaction. In the 
space of these two interactions, the lines of ferromagnetic and antiferromagnetic tran- 
sitions meet at a bicritical point. These results differ from those predicted by Landau 
theory. 

1. Introduction 

The q-state Potts model (Potts 1952) with attractive, or ferromagnetic, interactions 
has been studied extensively. Yet, with the exception of the q = 2 case, the Ising 
mode!, little or no attention has been paid to this model with repulsive or antifer- 
romagnetic interactions. Perhaps this is due to the fact that, in general, a repulsive 
interaction is insufficient to bring about order at any temperature. A case in point is a 
q 3 3 system on a square lattice with nearest-neighbour interactions only. However, it 
is not difficult to conceive of simple Potts systems with repulsive interactions which 
one would expect to order. For example the 3-state Potts model with nearest- 
neighbour repulsive interactions should order on a triangular lattice in two dimen- 
sions. One of the six possible ground states of the three-state Potts model on the 
triangular lattice is shown in figure 1. If one includes repulsive interactions between 
spins at greater distances, more complicated ground states can be stabilised. In the 
Ising model antiferromagnetic transitions occur which do not belong to the same 

Figure 1. One of the six possible antiferromagnetic ground states of the three-state Potts 
model on a triangular lattice. 
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universality class as the ferromagnetic transition (Domany et a1 1977, Krinsky and 
Mukamel 1977). The classes they do belong to, if they are not first order, have been of 
theoretical interest recently. We expect that the transitions of Potts models with three 
or more states and antiferromagnetic interactions will likewise belong to different 
classes than the ferromagnetic transitions unless both are first order. We also hope 
that these classes will be of interest. 

In this paper we examine the three-state Potts model on the triangular lattice. In 
the following section we present the usual Hamiltonian, extend it to include three-spin 
interactions and discuss its symmetries. The Landau theory of this system is discussed 
in § 3 and its prediction of the phase diagram is obtained. In § 4 we carry out a simple 
position-space renormalisation group calculation and obtain a very different phase 
diagram. We conclude with a brief summary. 

2. The Hamiltonian and its symmetries 

In order to write the Hamiltonian in a form which is convenient for our purposes we 
first decompose the triangular lattice into sublattices, A,  B, and C, whose lattice 
constant is J3 larger than that of the original lattice. In figure 1, spins with the same 
orientation are on the same sublattice. If the nearest-neighbour interaction is denoted 
K then the reduced Hamiltonian can be written as a sum over elementary triangles in 
the following form: 

where p = l / k T ,  the first sum is over all triangles or triples of nearest-neighbour sites, 
the second sum over the three possible orientations a, 6, and c of the Potts spin on 
each site (see figure l), and iA (is, iC) denotes the site of the ith triangle which is on 
sublattice A(B, C). Here PfA  is a projection variable which is 1 if the spin on site ZA 
has orientation 1, and 0 otherwise. The usual Potts model is defined with the term L in 
(2.1) equal to zero, but as such a Hamiltonian automatically gives rise to a non-zero L 
in our renormalisation group procedure (§ 4 below), it is convenient to include it 
explicitly from the start. 

The Hamiltonian (2.1) is invariant under all permutations of the spin-orientation 
labels a, b, and c (carried out simultaneously at all sites of the lattice), which form a 
group R, and also under the translations, rotations, and reflections which comprise the 
space group P6mm of a triangular lattice. As the operations in R and P6mm 
commute with each other, the symmetry group GO of H is simply their direct product. 

In the special case L = - 3K/2, H has an additional symmetry which can be made 
explicit by defining 

and rewriting (2.1) in the form 

Now define an operation 7 as follows: it rotates all spins on sublattice B clockwise by 
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2 ~ 1 3 ,  spins on sublattice C counterclockwise by 2 ~ / 3  and leaves those on A in- 
variant. That is to say, if [Imn] denotes the orientations on sublattices A, B, and C, 

T 3 [ U U U ]  = T 2 [ a b c ] = T [ U C b ]  = [aaa].  (2.4) 

The term in parentheses in (2.3) is zero for the configurations in (2.4) and those like 
them (generated from (bbb) and (ccc) by the application of T ) .  Similarly, 

T 3 [ U b b ]  = 7 2 [ U C U ] = T [ U U C ]  = [Ubb], (2.5) 

and for these configurations and their analogues the term in parentheses in (2.3) is 
one. 

Thus when M = 0 ,  H is invariant under all the transformations generated by 
products of elements in GO and T and 7*. We shall call this larger group G1. 

3. Order parameters and Landau theory 

Landau’s phenomenological theory predicts that only certain symmetry changes are 
allowed in second-order or continuous phase transitions, in contrast to first-order 
transitions (Landau and Lifshitz 1968). We shall show that none of the transitions we 
are considering are permitted to be second order in the Landau theory, due to the 
presence of third-order invariants in the appropriate irreducible representations of the 
symmetry groups. 

In applying the Landau theory it is necessary to introduce a set of order 
parameters, which we shall do as follows. Let us assume that for all values of M and K 
in (2.3), the thermal averages of P:A, PfB and Pf, are independent of i, that is, the 
expectation value for the Potts spin may depend on the sublattices but is identical for 
all sites on the same sublattice. Introduce the nine quantities 

nL = (p!d  (3.1) 
where L = A, B, or C and 1 = U ,  6, or c. Since Zlnk is equal to 1, only six of the n: are 
independent and we introduce the following six independent order parameters (or, 
equivalently, six components of a vector order parameter): 

( L ~ ~  = tJ3(nL- n i l .  (3.2) 4 - 2 a  1 
I L  - 2 n L -  5 

One can think of these as the averages of the projections on two orthogonal axes 
(horizontal and vertical in figure 1) of the Potts spins on sublattice L.  The elements in 
the group R permute the labels a, b, and c, transforming G I L  and &L (L fixed) into 
linear combinations of one another, whereas the operations of the space group P6mm 
have the effect of permuting the sublattice labels A, B, C. The $,L all vanish in the 
disordered (paramagnetic) state in which every n; is i. 

To discuss ferromagnetic and antiferromagnetic order it is useful to choose the 
following linear combinations of the (LIL: 

$1 = d ( * l A + $ l B  t $lC) $2 = d ( $ 2 A  + $2B + $2C) 

4 1  = 4(*1A-S*lB- t*1C)  4 2  = &$2A-t*2B-S*2C) (3.3) 
43 = d ( $ l B  - $1C) 4 4  = d ( $ 2 B  - 42C) .  

In the case of ferromagnetic ordering, lJItL is independent*of L (that is, the average 
direction of the spin is the same on all sublattices), so that the 4, are all zero. In the 



2126 M Schick and R B Grifiths 

case of antiferromagnetic ordering one expects &i,bjL to vanish (the ‘net magnetisa- 
tion’ is zero) and hence the i,bj are both zero. Thus we may call the two-dimensional 
space spanned by the $j the ‘ferromagnetic’ representation V+ and the four-dimen- 
sional space spanned by the 4j the ‘antiferromagnetic’ representation V- of the group 
Go. 

Both V+ and V- are irreducible representations of Go. In particular V- is the 
Kronecker product of a two-dimensional irreducible representation of R and a 
two-dimensional irreducible representation of P6mm. The latter may be thought of as 
spanned by the following functions of r :  sin(k e r )  and cos(k. r),  where r is the position 
of a node of the triangular lattice (assuming one node is at the origin), and k is a vector 
in reciprocal space at one of the corners of the first Brillouin zone. 

The matrices of the generators of Go are given in the appendix. By using them one 
can confirm that the functions 

on V+ and V- , which are obviously third order and non-vanishing, are invariant under 
the transformations of GO. Hence Landau theory predicts both ferromagnetic to 
disordered and antiferromagnetic to disordered transitions must be first order, if they 
occur at all, except, possibly, for special values of the parameters K and M where the 
third-order invariants vanish. The ferromagnetic case has been discussed previously 
(Straley and Fisher 1973), but not (so far as we know) the antiferromagnetic. 

In the case where M in (2.3) vanishes the Hamiltonian possesses a larger symmetry 
group G1, as noted above in § 2 .  In this case the sum of the spaces V++ V -  is an 
irreducible representation of G I  (see the appendix), and direct calculation shows that 
the function 

f3  = f 1  +f2lJ2 (3.5) 

is an invariant. Thus Landau theory predicts the phase transition from the ordered to 
disordered state at M = 0 should also be first order (if it occurs). 

On the basis of the above considerations one would anticipate a phase diagram in 
the K, M plane consisting of three first-order lines separating the disordered and 
ferromagnetic, the disordered and antiferromagnetic, and the ferromagnetic and 
antiferromagnetic phases, respectively. The last should lie along a portion of the 
negative K axis in the K, M plane. The phase diagram we obtain using renor- 
malisation group methods (0 4) has a similar topology, but with the very important 
difference that the transitions involving the disordered phase are continuous, and a 
bicritical point occurs instead of a triple point. 

4. Renormalisation group approach 

In this section we determine the phase diagram of our system using a simple position- 
space renormalisation group of the type introduced by Niemeyer and van Leeuwen 
(1973, 1974). In order to preserve the antiferromagnetic states under the trans- 
formation we must employ at least three cells. Our recursion relations are based on 
the cluster of three interpenetrating three-spin cells shown in figure 2 .  Periodic 
boundary conditions are employed. The same cell and spin assignment has been 
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Figure 2. Assignment of site spins to cells. 

applied to the Ising antiferromagnet with very good results (Schick et aJ 1976). The 
configurations of the three site spins within a cell are assigned to one of the three 
possible cell-spin orientations according to the following prescription. For the twenty- 
one configurations in which at least two of the site-spin orientations are the same, 
majority rule is employed. The six configurations of the form [abc] are each assigned 
to all three cell-spin states with weight of one third. As noted earlier, our choice of 
three cells leads to the introduction of a three-spin interaction. The recursion rela- 
tions are most easily written in terms of x = eKl2 and y = eM". They are 

x '  = [ z (aab) /Z (abc ) ]1 /6 ,  y '  = [z(aaa)/Z(abc)]'/6, 

where 

~ ( a a a )  = &18+ 1 p y  + 36x14y2 + 72x13y3 +6Oxl2y6+ 72x12y4+ 66x12y2 
+108x"y5+72x"y3+54x 'oy8+36x 10 y 4 +TX 40 9 y 3 +54x8y8 

t 5 4 x 8 y 6 +  1 8 ~ ~ y ' ~ + y ' ~ ,  

~ ( a a b )  = ?xl8 + 9x 16y2+ 18x16+ 3 0 ~ ' ~ ~  + 4 . 5 ~ ' ~ ~ ~ + 4 2 ~ ' ~ ~ ~ +  11 Id4+ 24Xi3y3 

+48x13y + 5x12y6+ 24x12y4+ 1O8xl2y2 + 3 4 ~ ' ~  + 84xi1y3 +42x"y 

+ 30x1ny4+ 24x1"y2+ 9x 'n+yx9y3,  

z ( a b c ) =  $x18+ 12x15y2+ 18x"y2+ 1 8 ~ ' ~ + 7 2 x ~ ~ y  + 1 0 2 ~ ' ~ ~ ' + 9 6 ~ ' ~ +  36xiiy3 

+ 1 4 4 ~  "y + 36x1@y2 + 5 4 x ' o + y ~ 9 y 3  + 81x8y2+ 27x8+ 18x6+ 1. 

We find the phase diagram shown in figure 3. The ferromagnetic transition is 
continuous as is well known (Baxter 1973). The antiferromagnetic transition is also 
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I 
2t F 

K 

Figure 3. Phase diagram in the space of two- and three-spin interactions. The three critical 
fixed points are denoted by crosses. The full curves denote continuous transitions and the 
broken line a first-order transition. 

continuous. The two phases meet at a bicritical point. This phase diagram results 
from seven fixed points. Three of them are uninteresting, being sinks for the three 
phases, A fourth is simply a discontinuity, or first-order, fixed point located at M = 0, 
K + -m. The properties of the three critical fixed points are given in table 1. The 
ferromagnetic fixed point has one relevant eigenvalue Y1 = 1.04. There have been 
numerous calculations of this eigenvalue. The earliest, by series methods, obtained 
1.02 (Straley and Fisher 1973). More recent calculations yield 1.17 from series 
(Zwanzig and Ramshaw 1977) and 1.20 from variational renormalisation group 
calculations (Burkhardt et a1 1976, Dasgupta 1977). The critical temperature of the 
Hamiltonian with nearest-neighbour interactions only is obtained from the inter- 
section of the critical surface with the line M = 3K, for along this line the three-spin 
interaction vanishes (equation (2.2)). This intersection yields K=(F) = 0.53. The exact 
value is 0.63 (Kim and Joseph 1974). The antiferromagnetic fixed point has one 
relevant eigenvalue Y1 = 1.1 1. With nearest-neighbour interactions only the critical 
coupling is  kc(^^) = - 1.56. Finally the eigenvalues of the bicritical point are both 
relevant, being 1.99 and 0.87. The phase diagram obtained here differs greatly from 
that predicted by mean-field theory. The sole agreement between them is the obvious 
coexistence of the ferromagnetic and antiferromagnetic phases at low temperatures 
along the line M = 0. 

Table 1. Properties of critical fixed points. 

Designation Name Location Eigenvalues 

F ferromagnetic K* = 0.32 Y1= 1.04 
M* = 1.44 Y2= -1.79 

AF antiferromagnetic K* = - 1.68 Y1= 1.11 
M* = -2.39 Y2 = - 1.90 

B bicritical K*= -2.72 Y1= 1.99 
M*=O Y2 = 0.87 
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5. Conclusions 

The renormalisation group calculation carried out above confirms our expectation 
that Potts systems can undergo antiferromagnetic transitions. On a two-dimensional 
triangular lattice the antiferromagnetic transition is continuous and belongs to a 
different universality class from the ferromagnetic transition. This is consistent with 
the fact that the order parameter for the former was found to have four components 
while that of the latter has only two. The transition on the line M = 0, corresponding 
to the bicritical point in the phase diagram in figure 3, has properties distinct from 
either the ferromagnetic or antiferromagnetic transitions. This is again consistent with 
the fact that the order parameter was found to have six components. Aside from the 
ferromagnetic case, these classes of transitions have not, to our knowledge, been 
studied previously. 
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Appendix. Representations of Go and GI 

The transformations of V+ and V- (§ 3) under R and P6mm can be obtained as 
follows. The group R consists of permutations of the labels of three Potts states a, b, 
and c. If we denote the permutations of a with b by the normal notation (ab) ,  etc, 
then we can write 

(ab)n t= ne (A.1) 
etc. Using the fact that XlnL = 1, one can show that 

1 ( a b ) h  = ~ J ~ $ ~ L - z $ I L  

(bC)$iL = $ 1 ~ ;  

(ab)9i  = tJ342 -&I 

(ab142 = iJ341 +$$a 

(ab)4z = tJ34i  + $42 

( ~ ~ ) v + z L = $ J ~ ~ / / I L  +$$zL (A.2) 

(bC)dJ2L = - *2L 

and hence 

(bc)*1= *1 

(bc )*2 = - * 2  

(ab)41= -$di+4J34z (bc)&=41 

(bc)42 = -42 

(ab143 = -;43 +id344 (bc)43 = 43 
(ab)h=$J343+$$4 ( b ~ ) 4 4  = -44. 

64.3) 
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The operations of P6mm do not alter the spin orientations, but have the effect of 
interchanging the sublattices. It is obvious that any permutation of the sublattices can 
be obtained by some operation in P6mm, and hence the transformations on V+ and 
V- are conveniently designated by (AB), for the interchange of sublattices A and B, 
etc. Thus one has 

(ABM1 = (BC)4i = $1 

(AB)41= -141 +4J343 

(ABM2 = (BC)42 = $2 

(BC)4i = 41 

  AB)^^ = -342+2J344 (BC)42 = 42 (A.4) 

(ABM3 =tJ341+443 (BC)43= -43 
(ABM4 = iJ342 + $44 (BC)44 = - 44. 

The other transformations of Go and V+ and V- can be obtained by using products of 
the generators (ab) ,  (bc),  (AB), and (BC). One can verify directly that the functions f l  
and f2  in (3.4) are invariant under these generators, and hence they are also invariant 
under Go. 

The transformations of 7 on V = V+ + V- can be obtained in a straightforward way 
using the definition in 0 2; i.e. T is the permutation, a goes to b goes to c goes to a ,  
denoted (abc),  when L = B, and (acb)  when L = C. The result is: 

Jt41+ 444 
T$2 = d'442 - J243 

742 = J4*2 4- 4 4 2  i- 4 4 3  

743 = J2*2 - 242 - 243 

T 4  1 J4*1 + $4 1- $44 

744= -J$$1+441-444. 

The group G1 is generated from 7 and Go, and hence its transformations on V can 
be obtained by successive applications of the five generators (ab ) ,  (bc) ,  (AB), (BC), 
and 7. One can show that V is an irreducible representation of G1 in the following 
manner. Evidently V+ and V- are inequivalent irreducible representations of Go, and 
hence, by Schur's lemmas (Hamermesh 1962), any transformation Q which commutes 
with all the transformations of Go has the form pl++Al-  where 1, is the identity 
(unit matrix) on V+, 1- the identity on V-, and p and A are real numbers. However, 
such a transformation commutes with ?-see (AS) above-mly if A = p .  As the 
transformations of G1 on V include all those of Go and also T, we see that only a 
multiple of the identity will commute with all the matrices of G1, and thus V forms an 
irreducible representation of GI. 

The function f 3  in (3.5) is, evidently, invariant under all the transformations of Go. 
Thus its invariance under GI follows from the fact (which can be checked by a direct 
calculation) that it is invariant under 7. 
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